Silicon Monohydride Clusters Si_nH (n = 4-10) and Their Anions: Structures, Thermochemistry, and Electron Affinities

JuCai Yang,*,† Xue Bai,† ChunPing Li,† and WenGuo Xu*,‡

School of Chemical Engineering, Inner Mongolia University of Technology, Huhehaote, 010062, People's Republic of China, and Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China

Received: December 22, 2004; In Final Form: May 6, 2005

The molecular structures, electron affinities, and dissociation energies of the Si_nH/Si_nH⁻ (n = 4-10) species have been examined via five hybrid and pure density functional theory (DFT) methods. The basis set used in this work is of double- ζ plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The three different types of neutral-anion energy separations presented in this work are the adiabatic electron affinity (EA_{ad}) , the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The first Si-H dissociation energies, $D_{\rm e}({\rm Si}_n{\rm H} \rightarrow {\rm Si}_n + {\rm H})$ for neutral Si_nH and $D_{\rm e}({\rm Si}_n{\rm H}^- \rightarrow {\rm Si}_n^- + {\rm H})$ for anionic Si_nH⁻ species, have also been reported. The structures of the ground states of these clusters are traditional H-Si single-bond forms. The ground-state geometries of Si₅H, Si₆H, Si₈H, and Si₉H predicted by the DFT methods are different from previous calculations, such as those obtained by Car-Parrinello molecular dynamics and nonorthogonal tightbinding molecular dynamics schemes. The most reliable EA_{ad} values obtained at the B3LYP level of theory are 2.59 (Si₄H), 2.84 (Si₅H), 2.86 (Si₆H), 3.19 (Si₇H), 3.14 (Si₈H), 3.36 (Si₉H), and 3.56 (Si₁₀H) eV. The first dissociation energies (Si_nH \rightarrow Si_n + H) predicted by all of these methods are 2.20–2.29 (Si₄H), 2.30–2.83 (Si₅H), 2.12–2.41 (Si₆H), 1.75–2.03 (Si₇H), 2.41–2.72 (Si₈H), 1.86–2.11 (Si₉H), and 1.92–2.27 (Si₁₀H) eV. For the negatively charged ion clusters (Si_nH⁻ \rightarrow Si_n⁻ + H), the dissociation energies predicted are 2.56-2.69 (Si₄H⁻), 2.80-3.01 (Si₅H⁻), 2.86-3.06 (Si₆H⁻), 2.80-3.03 (Si₇H⁻), 2.69-2.92 (Si₈H⁻), 2.92-3.18 (Si₉H⁻), and 2.89–3.25 (Si₁₀H⁻) eV.

Introduction

During the past decade, silicon hydrides have attracted a lot of attention because of their potential applications in semiconductors, optoelectronics, and surface growth processes and because of their likely existence in the circumstellar atmospheres of evolved carbon stars.¹⁻¹⁸ The binary clusters of silicon and hydrogen play key roles in the chemical vapor deposition of thin films, photoluminescence of porous silicon, potential fluctuations, and the Staebler-Wronski effect of hydrogenated amorphous silicon (α -Si:H), which is an important but poorly understood process.¹⁹⁻²⁷ Knowledge of the ground and lowlying electronic states of neutral and anionic silicon hydride clusters is very important for understanding these processes. With this motivation, we have carried out a detailed study of the structures, thermochemistry, and electron affinities of silicon monohydride clusters and their anions using density functional theory (DFT).²⁸⁻³⁰

There have been previous theoretical and experimental studies on silicon monohydride clusters. Kalcher and $Sax^{31,32}$ performed the studies of Si₂H and its anion with complete active space self-consistent field (CASSCF) geometry optimization followed by a multireference configuration interaction (MRCI) evaluation of the energies and completed Si₃H and its negatively

[†] Inner Mongolia University of Technology.

[‡] Beijing Institute of Technology.

charged ion at the coupled-cluster single double (CCSD) level of theory. Prasad et al.^{19–23} predicted the ground-state geometries of small Si_nH ($2 \le n \le 10$) clusters using Car–Parrinello molecular dynamics (CPMD), nonorthogonal tight-binding molecular dynamics (NTBMD), and genetic algorithms (GAs) methods. Pak et al.¹³ reported the electron affinity of SiH_n and Si₂H_n at the various levels of DFT. Recently, W. G. Xu et al.² presented the electron affinity of Si₃H_n at various levels of DFT. C. Xu et al.⁸ reported the photoelectron spectroscopy study of Si_nH⁻ (n = 2-4) along with ab initio calculations to aid the assignment.

Many theoretical and experimental studies have predicted that Si₂H and Si₃H are nonclassical H-bridged structures in their ground states.^{2,8,13,19–23,31–32} We focused on silicon monohydride clusters Si_nH (n = 4-10) in this study and found that they are traditional H-Si single-bond structures in their ground states. This result can be explained. Although hydrogen's valence is 1, it can be bonded with two silicon atoms in the ground state of silicon monohydrides, such as Si₂H and Si₃H, because there is a small charge transfer from the silicon atoms to the hydrogen.¹⁹ Nevertheless, this case only occurred in Si₂H and Si₃H because the ground state of Si₂ and Si₃ has a triplet state,^{2,33,34} which makes the charge transfer from the silicon atoms to the hydrogen easy. Conversely, the ground state of Si_n $(n \ge 4)$ has a singlet state, ^{35–37} so the charge transfer is difficult. When hydrogen is bonded with more than two silicon atoms, the Si_nH ($n \ge 4$) is either a saddle point or a local minimal point on the potential energy surface.

^{*} To whom correspondence should be addressed. Fax: (86)-0471– 6575796. E-mail: yangjc@imut.edu.cn. (J.Y.); Fax: (86)-010–68914780. E-mail: xuwg60@bit.edu.cn. (W.X.)

When predicting molecular energies, structures, and electron affinities, many theoretical approaches are possible, but when both reliability and computational expense are considered, gradient-corrected DFT is effective for predicting the electron affinities of many inorganic species such as the SiH_n/SiH_n^- , $Si_2H_n/Si_2H_n^-$, $Si_3H_n/Si_3H_n^-$, GeF_n/GeF_n^- , SeF_n/SeF_n^- , and AsF_n/AsF_n^- systems.^{8,2,38-40} The reliability of the predictions for electron affinities with DFT methods was comprehensively discussed in the recent (2002) review of Rienstra-Kiracofe et al.⁴¹ They reviewed the theoretical predictions of electron affinities with six DFT methods (BHLYP, B3LYP, B3P86, BP86, BLYP, and LSDA) and showed that the average deviation from experiment for electron affinities with the B3LYP and BLYP methods was only 0.15 eV for a set of 91 molecules. They also suggested that B3PW91 and BPW91 methods might outperform the B3LYP, BLYP, and BP86 functionals.

Theoretical Methods

The five different density functionals or hybrid Hartree–Fock/ density functional forms used here are (a) Becke's 1988 exchange functional⁴² with Lee, Yang, and Parr's correlation functional⁴³ (BLYP); (b) the half-and-half exchange functional⁴⁴ with the LYP correlation functional (BHLYP); (c) Becke's threeparameter hybrid exchange functional⁴⁵ with the LYP correlation functional (B3LYP); (d) Becke's 1988 exchange functional with the correlation functional of Perdew and Wang⁴⁶ (BPW91); and (e) Becke's three-parameter hybrid exchange functional with the correlation functional of Perdew and Wang (B3PW91).

Restricted methods were used for all closed-shell systems, whereas unrestricted methods were employed for the open-shell species. All the electron affinities and molecular structures have been determined with the Gaussian 98⁴⁷ program package. The default numerical integration grid (75,302) of Gaussian 98 was applied.

A standard double- ζ plus polarization (DZP) basis set with the addition of diffuse functions was utilized. The DZ part of the basis set was constructed from the Huzinage-Dunning-Hay⁴⁸ set of contracted double- ζ Gaussian functions. The DZP basis was formed by the addition of a set of five d-type polarization functions for Si and a set of p-type polarization functions for H [$\alpha_d(Si) = 0.50$, $\alpha_p(H) = 0.75$]. The DZP basis was augmented with diffuse functions; Si received one additional s-type and one additional set of p-type functions, and H received one additional s-type function. The diffuse function orbital exponents were determined in an "even-tempered sense" as a mathematical extension of the primitive set according to the formula of Lee and Schaefer⁴⁹ [$\alpha_s(Si) = 0.02729$, $\alpha_p(Si) =$ 0.02500, $\alpha_s(H) = 0.04415$]. The final contraction scheme for this basis set is Si (12s8p1d/7s5p1d) and H (5s1p/3s1p). This extended basis will be denoted as "DZP++".

All Si_nH (n = 4-10) stationary point geometries were analyzed by the evaluation of their harmonic vibrational frequencies at the five different levels of theory.

The electron affinities were evaluated as the difference of total energies in the following manner: the adiabatic electron affinity is determined by $EA_{ad} = E$ (zero-point corrected neutral) – E (zero-point corrected anion); the vertical electron affinity is determined by $EA_{vert} = E$ (optimized neutral) – E (anion at optimized neutral geometry); and the vertical detachment energy of the anion is determined by VDE = E (neutral at optimized anion geometry) – E (optimized anion).

The dissociation energies for Si_nH/Si_nH^- were determined from differences in total energies in the following manner: the first dissociation energies for the neutrals refer to the reaction

Figure 1. The optimized geometries for neutral Si_4H and its anion Si_4H^- . Only silicon atoms are numbered. Bond lengths and bond angles are in angstroms and degrees, respectively.

 $Si_nH \rightarrow Si_n + H$, whereas the first dissociation energies for the anions refer to the reaction $Si_nH^- \rightarrow Si_n^- + H$.

Results and Discussion

Si₄H and Si₄H⁻. There are a few previous studies on the possible structures of the Si₄H cluster. In 1998, Neumark and co-workers⁸ assigned the ²A' state as the ground state of neutral Si₄H by photoelectron spectroscopy experiments and MP2/6-31G* level of theory. Recently, Prasad et al.^{19–23} presented the groud-state structures for small Si_nH ($2 \le n \le 10$) using the CPMD, NTBMD, and GAs methods.

Our DFT results show a C_s symmetry with a ²A' state (shown in Figure 1) for the ground state of neutral Si₄H. This result is the same as the previous result obtained by Neumark et al.8 and Prasad et al.¹⁹⁻²³ The bond length evaluated by all of these methods is shown in Figure 1. The BHLYP functional provides the most reliable Si-Si bond length predictions, and the B3LYP functional provides the most reliable H-Si bond length predictions.² Hence, the most reliable Si–Si bond length calculations are 2.281 Å (BHLYP) for the two equivalent Si-Si bonds of the adjacent hydrogen atom and 2.271 Å (BHLYP) for the two equivalent Si-Si bonds of the nonadjacent hydrogen atom, and the most reliable Si-H bond length calculation is 1.498 Å (B3LYP), all of which are similar to the MP2/6-31G* results of Neumark et al.⁸ (2.313, 2.263, and 1.500 Å, respectively) and shorter than the NTBMD and GAs results of Prasad et al.^{21,22} Prasad et al. reported that the NTBMD bond lengths are 2.370, 2.345, and 1.532 Å, and that the GAs bond lengths are 2.360, 2.339, and 1.533 Å, respectively. No experimental data are available for comparison.

For the anionic Si₄H⁻ molecule, Xu et al.⁸ reported that the ¹A' (C_s symmetry) state is the ground state, which has theoretical bond lengths of 2.391, 2.274, and 1.535 Å at the MP2/6-31G* level of theory. Our DFT result is the same as the result of Xu et al.⁸ The equilibrium geometries of the ¹A' (C_s symmetry) ground states of negatively charged ions of Si₄H⁻ are also shown in Figure 1. The DZP++ BHLYP bond lengths of Si–Si, deemed to be the most reliable, are predicted to be 2.385 and 2.255 Å, which is shorter than the MP2/6-31G* Si–Si bond lengths by 0.006 and 0.019 Å, respectively. The DZP++ B3LYP bond length of H–Si, thought to be the most reliable, is predicted to be 1.522 Å, which is shorter than the MP2/6-31G* H–Si bond length by 0.013 Å. No experimental values are available.

Our theoretical neutral-anion energy separation for Si₄H, as well as experimental electron affinity data, is given in Table 1. The EA_{ad} is predicted to be 2.59 (B3LYP), 2.48 (BHLYP), 2.39 (BLYP), 2.58 (BPW91), and 2.65 (B3PW91) eV. The B3LYP, BPW91, and B3PW91 methods provide values that are close to the experimental value of 2.68 ± 0.01 eV by Xu et al.⁸ The

TABLE 1: The Zero-Point Corrected Adiabatic Electron Affinity (EA_{ad}), the Vertical Electron Affinity (EA_{vert}), and the Vertical Detachment Energy (VDE) for Si_nH (n = 4-10)^{*a*}

species	method	EA _{ad}	EA _{vert}	VDE
Si ₄ H	B3LYP BHLYP BLYP BPW91 B3PW91 experiment	$\begin{array}{c} 2.59 \\ 2.48 \\ 2.39 \\ 2.58 \\ 2.65 \\ 2.68 \pm 0.01^{b} \end{array}$	2.17 2.02 1.99 2.17 2.22	2.95 2.86 2.75 2.94 3.02
$Si_5H[^2B_2 \leftarrow ^1A_1(C_{2\nu})]$	B3LYP	2.84	2.49	3.13
	BHLYP	2.80	2.46	3.08
	BLYP	2.59	2.24	2.90
	BPW91	2.83	2.48	3.14
	B3PW91	2.95	2.60	3.24
$Si_5H[^2B_2 \leftarrow {}^1A_1(C_{3v})]$	B3LYP	2.86	2.49	3.30
	BHLYP	2.73	2.46	3.85
	BLYP	2.69	2.24	3.11
	BPW91	2.84	2.48	3.33
	B3PW91	2.90	2.60	3.40
Si ₆ H	B3LYP	2.86	2.40	3.26
	BHLYP	2.81	2.37	3.20
	BLYP	2.63	2.17	3.28
	BPW91	2.83	2.36	3.49
	B3PW91	2.94	2.48	3.34
Si ₇ H	B3LYP	3.19	2.71	3.64
	BHLYP	3.08	2.59	3.56
	BLYP	2.99	2.53	3.53
	BPW91	3.12	2.65	3.68
	B3PW91	3.21	2.72	3.68
Si ₈ H	B3LYP	3.14	2.87	3.56
	BHLYP	3.11	2.80	4.13
	BLYP	2.89	2.63	3.27
	BPW91	3.13	2.87	3.51
	B3PW91	3.26	2.98	3.67
Si ₉ H	B3LYP	3.36	2.77	3.73
	BHLYP	3.39	2.76	3.70
	BLYP	3.05	2.57	3.38
	BPW91	3.34	2.75	3.78
	B3PW91	3.51	2.82	3.79
Si ₁₀ H	B3LYP	3.56	2.87	3.96
	BHLYP	3.51	2.83	4.04
	BLYP	3.32	2.66	3.72
	BPW91	3.43	2.78	3.99
	B3PW91	3.55	2.88	4.10

^a Presented in eV. ^b Ref 8.

theoretical EA_{vert} ranges from 1.99 to 2.22 eV. The range of VDE is from 2.75 to 3.02 eV. The values of EA_{ad}, EA_{vert}, and VDE are different from each other on account of the large change in geometry between the neutral cluster and its anion. For example, the bond angle \angle HSiSi is 23° less in the Si₄H⁻ anion than it is in neutral Si₄H.

Si₅H and Si₅H⁻. Two minima structures for anionic Si₅H⁻ and one for the neutral Si₅H are shown in Figure 2. For neutral Si₅H, the structure of the ground state (shown in Figure 2a) displays C_{2v} symmetry with ²B₂ electronic state at all five DFT methods. This result is different from the previous result reported by Prasad et al.^{19–23} They reported that the structure of the ground state of Si₅H is the nonclassical H-bridged structure (shown in Figure 2b) at the CPMD,^{19,20} NTBMD,²¹ and GAs^{22,23} levels of theory. The structure of Figure 2b also has C_{2v} symmetry with a ²B₁ or ²A₁ electronic state. The structure with the ²B₁ state (Figure 2b) is less stable in energy than that with the ²B₂ state (Figure 2a) by approximately 0.45 (B3LYP), 0.57(BHLYP), 0.36 (BLYP), 0.38 (BPW91), and 0.46 (B3PW91) eV. The structure with the ²A₁ state (Figure 2b) is less stable in energy than that with the ²B₂ state (Figure 2 a) by approximately 0.98 (BHLYP), 0.79 (B3LYP), 0.64 (BLYP), 0.78 (BPW91), and 0.91 (B3PW91) eV. That is, the structure shown in Figure 2b is a local minimal point on the potential energy surface.

The calculated bond lengths for Si_5H are shown in Figure 2. No experimental or theoretical data are available for comparison. The BHLYP method, deemed to be the most reliable, predicts that the Si–Si bond distances are 2.285, 2.483, and 2.362 Å. The B3LYP method, thought to be the most reliable, predicts that the H–Si bond length is 1.475 Å.

For the structure of the ground state of the anion Si₅H⁻, our DFT results show C_{2v} symmetry with a ¹A₁ state (shown in Figure 2c) at the BHLYP and the B3PW91 levels of theory, whereas other methods show C_{3v} symmetry with a ¹A₁ state (shown in Figure 2d). The BHLYP and B3PW91 functionals predict that C_{2v} symmetry is more stable in energy than is C_{3v} symmetry by 0.07 and 0.05 eV, respectively, whereas the B3LYP, BLYP, and BPW91 functionals predict that C_{3v} symmetry is more stable in energy than is C_{2v} symmetry by 0.02, 0.10, and 0.01 eV, respectively. In this case, we employed the MP2/6-311G(d,p) method. At the MP2/6-311G(d,p) level of theory, the structure of C_{2v} symmetry is more stable in energy than that of C_{3v} symmetry by 0.03 eV. All of these values indicate that the potential energy surface of Si₅H⁻ is very flat, that many isomeric arrangements are possible, and that accurate predictions of equilibrium geometries require advanced quantum mechanical investigations. The BHLYP and B3PW91 results for the C_{2v} symmetry of the ground state of Si₅H⁻ are perhaps the most reliable because they are consistent with the MP2/6-311G(d,p) result.

The calculated bond lengths for Si₅H⁻ are shown in Figure 2. For the structure of C_{2v} symmetry, the most reliable values for the Si–Si bond lengths are 2.339 Å (BHLYP) for the two equivalent Si₁–Si₂ and Si₁–Si₃ bonds, 2.373 Å (BHLYP) for the two equivalent Si₁–Si₄ and Si₁–Si₅ bonds, and 2.386 Å (BHLYP) for the four equivalent Si–Si bonds, and the most reliable value for the Si–H bond length is 1.485 Å (B3LYP). For the structure of C_{3v} symmetry with a ¹A₁ state, the most reliable values for the bond lengths are 2.298 Å (BHLYP) for the three equivalent Si–Si bonds of the adjacent hydrogen atom, 2.356 Å (BHLYP) for the three similar to the MP2/6-311G(d,p) results: 2.299, 2.352, and 1.492 Å, respectively.

The theoretical EA_{ad} , EA_{vert} , and VDE are listed in Table 1. The predicted EA_{ad} for ${}^{2}B_{2} \leftarrow {}^{1}A_{1}(C_{2v})$ ranges from 2.59 to 2.95 eV with the five different functionals. The EA_{vert} values range from 2.24 to 2.60 eV. The range of VDE is from 2.90 to 3.24 eV. Among these, the values predicted by the B3LYP functional are very close to the values predicted by the BPW91 functional. For ${}^{2}B_{2} \leftarrow {}^{1}A_{1}(C_{3v})$, the predicted EA_{ad} ranges from 2.69 to 2.90 eV. The range of VDE is from 3.11 to 3.85 eV. No experimental data are available for comparison.

Si₆H and Si₆H⁻. There are a few previous theoretical studies on the structure of the ground state of the Si₆H cluster. At the NTBMD level of theory, the ground-state geometry of Si₆H is predicted to consist of nonclassical H-bridged Si–Si–Si triangular surfaces.²¹ At the CPMD level of theory, the groundstate geometry of Si₆H is predicted to have C_s symmetry.^{19,20} At the GAs level of theory, the geometry of the ground state of Si₆H is calculated to consist of H-bridged Si–Si–Si triangular surfaces.^{22,23} At the MP2/6-311G(d,p) level of theory, the ground-state geometry of Si₆H is predicted to have C_{2v} symmetry.⁵

Figure 2. (a-d) The optimized geometries for neutral Si₅H and its anion. The Si₅H⁻ geometries are obtained by DFT methods with a DZP++ basis set and at the MP2/6-311G(d,p) level of theory. Only silicon atoms are numbered. Black solid lines indicate bridged bonding between a hydrogen and a silicon atom. Bond lengths and bond angles are in angstroms and degrees, respectively.

Figure 3. The optimized geometries for neutral Si_6H and its anion Si_6H^- . Only silicon atoms are numbered. Bond lengths are in angstroms.

Our DFT results show C_{2v} symmetry with the ²B₁ state (shown in Figure 3) for the ground state of neutral Si₆H. This result is the same as the previous result obtained by Chambreau et al.⁵ The most reliable prediction of bond lengths are 2.311 Å (BHLYP) for the two equivalent Si₄–Si₅ and Si₄–Si₆ bonds of the adjacent hydrogen atom, 2.440 Å (BHLYP) for the other two equivalent Si–Si bonds of the adjacent hydrogen atom, 2.396 Å (BHLYP) for the two equivalent Si₃–Si₅ and Si₃–Si₆ bonds of the nonadjacent hydrogen atom, 2.558 Å (BHLYP) for the other two equivalent Si–Si bonds of the nonadjacent hydrogen atom, 2.505 Å (BHLYP) for the four equivalent Si–Si bonds, and 1.484 Å (B3LYP) for the H–Si bonds. These values are similar to the MP2/6-311G(d,p) values of 2.313, 2.451, 2.512, 2.568, 2.512, and 1.482 Å, respectively.⁵ No experimental data are available for comparison.

For the anionic Si₆H⁻ molecule, the C_{4v} -symmetry structure of the ¹A₁ ground state is shown in Figure 3. Comparison with the neutral Si₆H shows that there is a substantial change in the geometry between the neutral cluster and the anion. The most reliable prediction of the bond lengths for Si₆H⁻ are 2.362 Å (BHLYP) for the four equivalent axial–equatorial Si–Si bonds of the adjacent hydrogen atom, 2.455 Å (BHLYP) for the four equivalent axial–equatorial Si–Si bonds of the nonadjacent hydrogen atom, 2.568 Å (BHLYP) for the four equivalent equatorial Si–Si bonds, and 1.503 Å (B3LYP) for the H–Si bonds. No experimental or additional theoretical data are available for comparison.

The theoretical EA_{ad} , EA_{vert} , and VDE are listed in Table 1. The EA_{ad} for Si₆H is predicted to be 2.86 (B3LYP), 2.81 (BHLYP), 2.63 (BLYP), 2.83 (BPW91), and 2.94 (B3PW91) eV. The EA_{ad} value predicted by B3PW91 is the largest and the value predicted by BLYP is the smallest among all of these methods. The EA_{vert} values range from 2.17 to 2.48 eV. The

Figure 4. The optimized geometries for neutral Si₇H and its anion Si₇H⁻. Only silicon atoms are numbered. Bond lengths are in angstroms.

range of VDE is from 3.20 to 3.49 eV. No experimental values are available.

Si₇H and Si₇H⁻. The C_{5v} -symmetry structure of the ²A₁ ground state for neutral Si₇H and the C_{5v} -symmetry structure of the ¹A₁ ground state for the anion Si₇H⁻ are displayed in Figure 4. Our results for the geometry of the ground state of Si₇H are the same as the previous results obtained by Balamurugan et al.¹⁹ However, this result differs from the previous studies in which the NTBMD and GAs methods were used.^{21,22} For neutral Si₇H, the most reliable bond lengths of Si–Si bonds calculated by BHLYP are 2.472 Å for the five equivalent axial–equatorial Si–Si bonds of the adjacent hydrogen atom, 2.498 Å for the five equivalent axial–equatorial Si–Si bonds. The most reliable bond length of H–Si calculated by B3LYP is 1.490 Å. No other theoretical or experimental bond lengths are available for comparison.

For the Si₇H⁻ anion, no experimental data are available. The five equivalent axial-equatorial Si-Si bonds of the adjacent hydrogen atom have been elongated from the neutral Si₇H structure by \sim 0.020 Å. The five equivalent axial-equatorial Si-Si bonds of the nonadjacent hydrogen atom have been elongated from its neutral structure by \sim 0.127 Å. The five equivalent equatorial Si-Si bonds have been shortened from the neutral Si₇H structure by \sim 0.054 Å. And the H-Si bond length has been elongated from its neutral structure by \sim 0.013 Å. The most reliable predictions of bond lengths are 2.45, 2.619, and 2.413 Å for the Si-Si bonds (BHLYP), and 1.503 Å for the H-Si bonds (B3LYP).

The theoretical EA_{ad} , EA_{vert} , and VDE are listed in Table 1. The EA_{ad} for Si₇H is predicted to be 3.19 (B3LYP), 3.08 (BHLYP), 2.99 (BLYP), 3.12 (BPW91), and 3.21 (B3PW91) eV. Again, the EA_{ad} values calculated by B3PW91 are the

Figure 5. The optimized geometries for neutral Si_8H and its anion Si_8H^- . Only silicon atoms are numbered. Bond lengths and bond angles are in angstroms and degrees, respectively.

largest and the values calculated by BLYP are the least among all of these methods. The EA_{vert} values range from 2.53 to 2.72 eV. The range of VDE is from 3.53 to 3.68 eV. No experimental values are available.

Si₈H and Si₈H⁻. The C_s -symmetry structure of the ²A" ground state for neutral Si₈H is displayed in Figure 5. Our results for the geometry of the ground state of Si₈H not only differ from the results obtained by Balamurugan et al.¹⁹ using the CPMD method, but they also differ from the previous studies^{21,22} in which the NTBMD and GAs methods were used. At the DFT levels of theory, their structures (not shown in this paper) are not the most stable. For example, the CPMD structure (see ref 19) is less stable in energy than is the DFT structure by approximately 0.22 (B3LYP), 0.31 (BHLYP), 0.19 (BLYP), 0.01 (BPW91), and 0.07 (B3PW91) eV. For neutral Si₈H, the most reliable bond lengths of Si-Si bonds predicted by the BHLYP method are 2.434 Å for the two equivalent Si_1-Si_2 and Si_1-Si_3 bonds, 2.390 Å for the two equivalent Si_4-Si_2 and Si_4-Si_3 bonds, 2.366 Å for the two equivalent equatorial Si_7-Si_5 and Si_7-Si_6 bonds, 2.377 Å for the two equivalent equatorial Si_8-Si_5 and Si_8-Si_6 bonds, 2.483 Å for the two equivalent equatorial Si₂-Si₅ and Si₃-Si₆ bonds, 2.379 Å for the Si_1-Si_7 bonds, and 2.292 Å for the Si_4-Si_8 bonds. The most reliable bond length of H-Si calculated by B3LYP is 1.483 Å. No other theorectical or experimental bond lengths are available for comparison.

For the anion Si_8H^- , the structure of the ground state possesses C_{3v} symmetry with a 1A_1 electronic state (shown in Figure 5). Comparison with the neutral Si_8H shows that there is a substantial change in the geometry between the neutral cluster and the anion. The most reliable prediction of bond lengths are 2.334 Å (BHLYP) for the three equivalent Si–Si bonds of the adjacent hydrogen atom, 2.383 Å (BHLYP) for the three equivalent Si–Si bonds of the nonadjacent hydrogen atom, 2.412 Å (BHLYP) for the other six equivalent Si–Si bonds, and 1.488 Å (B3LYP) for the H–Si bonds. No experimental values are available.

The theoretical EA_{ad} , EA_{vert} , and VDE are listed in Table 1. The calculated EA_{ad} for Si_8H ranges from 2.89 to 3.26 eV with the five different functionals. The EA_{vert} values range from 2.63 to 2.98 eV. The range of VDE is from 3.27 to 4.13 eV. As can been seen from Table 1, the B3LYP EA_{ad} value of 3.14 eV, EA_{vert} value of 2.87 eV, and VDE value of 3.56 eV are very close to the BPW91 values of 3.13, 2.87, and 3.51 eV, respectively. No experimental values are available.

Si₉H and Si₉H⁻. The geometry of the ground state of Si₉H is displayed in Figure 6. As can be seen from Figure 6, the

Neutral Si₉H (C_1)

Anion $Si_9H'(C_s)$

Figure 6. The optimized geometries for neutral Si_9H and its anion Si_9H^- .

 TABLE 2: Bond Lengths (in Angstroms) for Neutral Si₉H

 Calculated with DZP++ Basis Sets

bonds	B3LYP	BHLYP	BLYP	BPW91	B3PW91
Si ₁ -Si ₂	2.369	2.358	2.389	2.363	2.347
Si ₁ -Si ₄	2.374	2.353	2.397	2.380	2.360
Si ₁ -Si ₆	2.665	2.615	2.722	2.649	2.617
Si ₁ -Si ₈	2.394	2.376	2.418	2.397	2.378
Si ₂ -Si ₃	2.387	2.370	2.413	2.376	2.357
Si ₂ -Si ₆	2.386	2.373	2.405	2.394	2.375
Si ₃ -Si ₅	2.407	2.383	2.441	2.406	2.379
Si ₃ -Si ₆	2.667	2.622	2.723	2.645	2.612
Si ₃ -Si ₇	2.486	2.460	2.512	2.488	2.468
Si ₄ -Si ₅	2.342	2.316	2.365	2.350	2.330
Si ₄ -Si ₉	2.450	2.428	2.483	2.451	2.423
Si ₄ -H	1.489	1.476	1.501	1.502	1.489
Si ₅ -Si ₇	2.724	2.857	2.709	2.637	2.649
Si5-Si9	2.626	2.626	2.649	2.595	2.586
Si ₆ -Si ₇	2.555	2.506	2.591	2.564	2.537
Si ₆ -Si ₈	2.358	2.348	2.378	2.362	2.341
Si ₆ -Si ₉	2.796	2.761	2.848	2.762	2.733
Si7-Si9	2.386	2.364	2.409	2.389	2.368
Si8-Si9	2.466	2.454	2.492	2.445	2.429

silicon atoms 1, 4, 5, 7, and 6 and the hydrogen atom do not lie in a plane. Hence, the symmetry of Si₉H is C_1 . This DFT result is different from the CPMD result¹⁹ and the NTBMD result.²¹ The calculated bond lengths for Si₉H are shown in Table 2.

The geometry of the ground state of Si_9H^- is also shown in Figure 6. As can be seen from Figure 6, the silicon atoms 1, 4, 5, 6, and 7 and the hydrogen atom lie in the same plane, and this cluster has a mirror symmetry about this plane. So the symmetry of Si_9H^- is C_s . The electronic state is ¹A'. Compared with Si_8H^- , this geometry can be considered to be "capped" by one silicon atom on the plane that is formed by silicon atoms 2, 7, 3, and 8 (or 2, 6, 4, and 7, or 2, 6, 5, and 8) in the geometry of Si_8H^- (see Figure 5). The calculated bond lengths for Si_9H^- are shown in Table 3.

The theoretical EA_{ad} , EA_{vert} , and VDE are listed in Table 1. The predicted EA_{ad} for Si₉H ranges from 3.05 to 3.51 eV with the five different functionals. The EA_{vert} values range from 2.57 to 2.82 eV. The range of VDE is from 3.38 to 3.79 eV. As can been seen from Table 1, the B3LYP EA_{ad} value of 3.36 eV is close to the BPW91 EA_{ad} value of 3.34 eV. No experimental values are available.

Si₁₀H and Si₁₀H⁻. The C_s -symmetry structure of the ²A' ground state for neutral Si₁₀H and the C_s -symmetry structure of the ¹A' ground state for the anion Si₁₀H⁻ are displayed in Figure 7. For neutral Si₁₀H, silicon atoms 4, 1, 10, and 9 and the hydrogen atom lie in the same plane, and this cluster has a mirror symmetry about this plane. This result is the same as that of the previous studies.^{19,21} The bond lengths predicted by all five DFT functionals are listed in Table 4.

For the negatively charged ion $Si_{10}H^-$, silicon atoms 2, 5, 7, and 10 and the hydrogen atom (in Figure 7) lie in the same plane, and $Si_{10}H^-$ has a mirror symmetry about this plane. The calculated bond lengths are listed in Table 5. No experimental data are available for comparison.

Figure 7. The optimized geometries for neutral $Si_{10}H$ and its anion $Si_{10}H^-$.

TABLE 3: Bond Lengths (in Angstroms) for the Anion Si_9H^- Calculated with DZP++ Basis Sets

bonds	B3LYP	BHLYP	BLYP	BPW91	B3PW91
Si ₁ -Si ₂	2.508	2.485	2.534	2.508	2.490
Si ₁ -Si ₄	2.573	2.549	2.610	2.553	2.535
Si1-Si6	2.327	2.304	2.353	2.337	2.318
Si1-Si8	2.508	2.485	2.534	2.508	2.490
Si ₂ -Si ₃	2.511	2.490	2.540	2.503	2.486
Si ₂ -Si ₄	2.420	2.402	2.443	2.423	2.409
Si ₂ -Si ₆	2.681	2.633	2.745	2.659	2.628
Si3-Si5	2.381	2.360	2.405	2.388	2.370
Si ₃ -Si ₆	2.582	2.530	2.647	2.565	2.531
Si3-Si7	2.409	2.388	2.432	2.419	2.401
Si3-Si9	2.638	2.584	2.700	2.633	2.595
Si ₄ -Si ₅	2.481	2.480	2.488	2.467	2.464
Si ₄ -Si ₈	2.420	2.402	2.443	2.423	2.409
Si ₄ -H	1.501	1.487	1.514	1.513	1.502
Si5-Si9	2.381	2.360	2.405	2.388	2.370
Si ₆ -Si ₇	2.389	2.370	2.416	2.384	2.369
Si ₆ -Si ₈	2.681	2.633	2.745	2.659	2.628
Si ₆ -Si ₉	2.582	2.530	2.647	2.565	2.531
Si7-Si9	2.409	2.388	2.432	2.419	2.401
Si8-Si9	2.511	2.490	2.540	2.503	2.486

TABLE 4: Bond Lengths (in Angstroms) for Neutral $Si_{10}H$ Calculated with DZP++ Basis Sets

bonds	B3LYP	BHLYP	BLYP	BPW91	B3PW91
Si ₁ -Si ₂	2.699	2.638	2.769	2.676	2.637
Si_1-Si_4	2.748	2.738	2.795	2.680	2.667
Si ₁ -Si ₇	2.447	2.422	2.474	2.455	2.436
$Si_1 - Si_{10}$	2.373	2.354	2.395	2.377	2.363
Si ₂ -Si ₅	2.532	2.518	2.557	2.525	2.513
Si2-Si8	2.403	2.376	2.427	2.415	2.395
Si2-Si9	2.500	2.476	2.532	2.485	2.466
$Si_2 - Si_{10}$	2.389	2.366	2.417	2.389	2.371
Si ₄ -Si ₅	2.459	2.437	2.486	2.456	2.440
Si_4-Si_7	2.445	2.429	2.466	2.441	2.428
Si5-Si6	2.663	2.627	2.690	2.676	2.655
Si5-Si8	2.694	2.699	2.737	2.622	2.614
Si5-Si9	2.481	2.457	2.510	2.482	2.465
Si ₄ -H	1.487	1.472	1.500	1.500	1.488

The theoretical EA_{ad} , EA_{vert} , and VDE are listed in Table 1. The predicted EA_{ad} for $Si_{10}H$ ranges from 3.32 to 3.56 eV with the five different functionals. The EA_{vert} values range from 2.66 to 2.88 eV. The range of VDE is from 3.72 to 4.10 eV. No experimental values are available.

Dissociation Energies. The first bond dissociation energies for Si_nH/Si_nH[−] (n = 4-10) are given in Tables 6 and 7. As can be seen from Table 6, the theoretical results for the Si₄H \rightarrow Si₄ + H dissociation energy predicted by all five of the DFT functionals are in good agreement with each other, ranging from 2.20 to 2.29 eV. The theoretical dissociation energies range from 2.30 to 2.83 (Si₅H \rightarrow Si₅ + H), 2.12 to 2.41 (Si₆H \rightarrow Si₆ + H), 1.75 to 2.03 (Si₇H \rightarrow Si₇ + H), 2.41 to 2.72 (Si₈H \rightarrow Si₈ + H), 1.86 to 2.11 (Si₉H \rightarrow Si₉ + H), and 1.92 to 2.27 (Si₁₀H \rightarrow Si₁₀ + H) eV. Among these DFT methods, the BHLYP predicts the largest dissociation energies, and the BLYP or the BPW91 predicts the smallest dissociation energies.

TABLE 5: Bond Lengths (in Angstroms) for the Anion $Si_{10}H^-$ Calculated with DZP++ Basis Sets

B3LYP	BHLYP	BLYP	BPW91	B3PW91
2.672	2.634	2.711	2.655	2.632
2.636	2.617	2.667	2.604	2.591
2.415	2.380	2.450	2.425	2.400
2.480	2.464	2.504	2.476	2.461
2.375	2.349	2.405	2.372	2.353
2.474	2.455	2.498	2.471	2.456
2.435	2.418	2.456	2.435	2.421
2.377	2.362	2.399	2.373	2.360
1.496	1.481	1.509	1.511	1.498
2.491	2.468	2.516	2.498	2.479
2.602	2.575	2.638	2.578	2.561
2.648	2.661	2.659	2.611	2.611
2.411	2.390	2.438	2.413	2.396
2.678	2.635	2.731	2.650	2.625
	B3LYP 2.672 2.636 2.415 2.480 2.375 2.474 2.435 2.377 1.496 2.491 2.602 2.648 2.411 2.678	B3LYP BHLYP 2.672 2.634 2.636 2.617 2.415 2.380 2.480 2.464 2.375 2.349 2.474 2.455 2.435 2.418 2.377 2.362 1.496 1.481 2.491 2.468 2.602 2.575 2.648 2.661 2.411 2.390 2.678 2.635	B3LYPBHLYPBLYP2.6722.6342.7112.6362.6172.6672.4152.3802.4502.4802.4642.5042.3752.3492.4052.4742.4552.4982.4352.4182.4562.3772.3622.3991.4961.4811.5092.4912.4682.5162.6022.5752.6382.6482.6612.6592.4112.3902.4382.6782.6352.731	B3LYPBHLYPBLYPBPW912.6722.6342.7112.6552.6362.6172.6672.6042.4152.3802.4502.4252.4802.4642.5042.4762.3752.3492.4052.3722.4742.4552.4982.4712.4352.4182.4562.4352.3772.3622.3992.3731.4961.4811.5091.5112.4912.4682.5162.4982.6022.5752.6382.5782.6482.6612.6592.6112.4112.3902.4382.4132.6782.6352.7312.650

TABLE 6: Dissociation Energies (D_e) for the Neutral Si_nH \rightarrow Si_n + H (n = 4-10) in eV^a

dissociation	B3LYP	BHLYP	BLYP	BPW91	B3PW91
$\begin{array}{l} Si_4H \rightarrow Si_4 + H \\ Si_5H \rightarrow Si_5 + H \\ Si_6H \rightarrow Si_6 + H \\ Si_7H \rightarrow Si_7 + H \\ Si_8H \rightarrow Si_8 + H \\ Si_9H \rightarrow Si_9 + H \end{array}$	2.26 2.57 2.27 1.88 2.61 2.06	2.28 2.83 2.41 2.03 2.72 2.11	2.20 2.30 2.12 1.75 2.47 2.00	2.23 2.47 2.14 1.75 2.41 1.86	2.29 2.71 2.28 1.89 2.56 1.94
$Si_{10}H \rightarrow Si_{10} + H$	2.09	2.27	1.95	1.92	2.08

^a Values are corrected with zero-point vibrational energies.

TABLE 7: Dissociation Energies (D_e) for the Anion Si_nH⁻ \rightarrow Si_n⁻ + H (n = 4-10) in eV^a

dissociation	B3LYP	BHLYP	BLYP	BPW91	B3PW91
$\frac{\text{Si}_4\text{H}^- \rightarrow \text{Si}_4^- + \text{H}}{\text{Si}_5\text{H}^- \rightarrow \text{Si}_5^- + \text{H}}$	2.69	2.67	2.64	2.56	2.62
	2.95	3.01	2.84	2.80	2.90
$Si_{6}H^{-} \rightarrow Si_{6}^{-} + H$	3.00	3.06	2.89	2.86	2.96
$Si_{7}H^{-} \rightarrow Si_{7}^{-} + H$	2.96	3.03	2.84	2.80	2.93
$Si_8H^- \rightarrow Si_8^- + H$	2.87	2.92	2.77	2.69	2.79
$Si_9H^- \rightarrow Si_9^- + H$	3.11	3.18	2.98	2.92	3.04
$Si_{10}H^- \rightarrow Si_{10}^- + H$	3.17	3.25	3.07	2.89	3.01

^a Values are corrected with zero-point vibrational energies.

As can be seen from Table 7, the theoretical results for the $Si_4H^- \rightarrow Si_4^- + H$ dissociation energy calculated by all of the DFT functionals are in good agreement with each other, ranging from 2.56 to 2.69 eV. The theoretical dissociation energies range from 2.80 to 3.01 ($Si_5H^- \rightarrow Si_5^- + H$), 2.86 to 3.06 ($Si_6H^- \rightarrow Si_6^- + H$), 2.80 to 3.03 ($Si_7H^- \rightarrow Si_7^- + H$), 2.69 to 2.92 ($Si_8H^- \rightarrow Si_8^- + H$), 2.92 to 3.18 ($Si_9H^- \rightarrow Si_9^- + H$), and 2.89 to 3.25 ($Si_{10}H^- \rightarrow Si_{10}^- + H$) eV. At the same level of theory, the calculated dissociation energies of Si_5H^- , Si_6H^- , and Si_7H^- are consistent with each other. Of all of these levels of theory, the BHLYP predicts the largest dissociation energies.

To our knowledge, there are no other experimental or theoretical data regarding dissociation energies for these systems. Our results may thus provide a reference for further study.

Conclusions

The present work provides a systematic study of the silicon monohydride clusters Si_nH/Si_nH^- (n = 4-10) with five carefully selected DFT methods. The structures of the ground states of these clusters are reported to be traditional H–Si single-bond structures. For the prediction of bond lengths, the BHLYP method may provide the most reliable Si–Si bond lengths, and the B3LYP method may provide the most reliable Si–H bond distances. Compared with the limited experimental EA_{ad} values, the average absolute errors for all five DFT methods are 0.04

(B3LYP), 0.13 (BHLYP), 0.18 (BLYP), 0.08 (BPW91), and 0.08 (B3PW91) eV.⁵⁰ The B3LYP method is the most reliable. The EA_{ad}'s are predicted by the B3LYP method to be 2.59 (Si₄H), 2.84 (Si₅H), 2.86 (Si₆H), 3.19 (Si₇H), 3.14 (Si₈H), 3.36 (Si₉H), and 3.56 (Si₁₀H) eV. With the exception of Si₈H (which is slightly smaller than Si₇H), the electron affinity of a Si_nH cluster increases as the cluster size *n* increases.

In the case of unitary clusters, such as Si_n and As_n,⁵¹ the BHLYP method yields the smallest dissociation energies. For binary clusters of neutral Si_nH and its anion Si_nH⁻, the BHLYP method yields the largest dissociation energies. The first dissociation energies (Si_nH \rightarrow Si_n + H) predicted by all of these methods are 2.20–2.29 (Si₄H), 2.30–2.83 (Si₅H), 2.12–2.41 (Si₆H), 1.75–2.03 (Si₇H), 2.41–2.72 (Si₈H), 1.86–2.11 (Si₉H), and 1.92–2.27 (Si₁₀H) eV. For negatively charged ion clusters (Si_nH⁻ \rightarrow Si_n⁻ + H), the dissociation energies predicted are 2.56–2.69 (Si₄H⁻), 2.80–3.01 (Si₅H⁻), 2.86–3.06 (Si₆H⁻), 2.80–3.03 (Si₇H⁻), 2.69–2.92 (Si₈H⁻), 2.92–3.18 (Si₉H⁻), and 2.89–3.25 (Si₁₀H⁻) eV.

We hope that the present theoretical predictions will provide strong motivation for further experimental studies of these important silicon monohydride clusters and their anions.

Acknowledgment. This work was supported by a grant from the Inner Mongolia Natural Science Foundation of China.

References and Notes

(1) Sari, L.; McCarthy, M. C.; Schaefer, H. F.; Thaodeus, P. J. Am. Chem. Soc. 2003, 125, 11409.

- (2) Xu, W. G.; Yang, J. C.; Xiao, W. S. J. Phys. Chem. A 2004, 108, 11345.
- (3) Wong, H. W.; Nieto, J. C. A.; Swihart, M. T. Broadbelt, L. J. J. Phys. Chem. A 2004, 108, 874.
 - (4) Su, M.-D. J. Phys. Chem. 2004, 108, 823.
- (5) Chambreau, S. D.; Wang, L.; Zhang, J. J. Phys. Chem. A 2002, 106, 5081.
- (6) Naruse, Y.; Ma, J.; Inagaki, S. J. Phys. Chem. A 2003, 107, 2860.
 (7) Wang, W. N.; Tang, H. R.; Fan, K. N.; Iwata, S. J. Chem. Phys. 2001, 114, 1278.
- (8) Xu, C.; Taylor, T. R.; Burton, G. R.; Neumark, D. M. J. Chem. Phys. **1998**, 108, 7645.
- (9) Kasdan, A.; Herbst, E.; Lineberger, W. C. J. Chem. Phys. 1975, 62, 541.
- (10) Howling, A. A.; Sansonnes, L.; Dorier, J.-L.; Hollenstein, C. J. Appl. Phys. **1994**, 75, 1340.
- (11) Kessels, W. M. M.; Van de Sanden, M. C. M.; Schram, D. C. Appl. Phys. Lett. **1998**, 72, 2397.
- (12) Ma, B. Y.; Allinger, N. L.; Schaefer, H. F. J. Chem. Phys. 1996, 105, 5731.
- (13) Pak, C.; Rienstra-Kiracofe, J. C.; Schaefer, H. F. J. Phys. Chem. A 2000, 104, 11232.
- (14) Sari, L.; Gonzale, J. M.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 2001, 114, 4472.
- (15) Tonokura, K.; Murasaki, T.; Koshi, M. J. Phys. Chem. 2002, 106, 555.
- (16) Swihart, M. T. J. Phys. Chem. A 2000, 104, 6083.
- (17) Swihart, M. T.; Girshick, S. L. J. Phys. Chem. B 1999, 103, 64.
- (18) Talukdar, S. S.; Swihart, M. T. J. Aerosol Sci. 2004, 35, 889.
- (19) Balammurugan, D.; Prasad, R. Phys. Rev. B 2001, 64, 205406.
- (20) Prasad, R. Bull. Mater. Sci. 2003, 26, 117.
- (21) Gupte, G. R.; Prasad, D. Int. J. Mod. Phys. B 1998, 12, 1737.
- (22) Chakraborti, N.; De, P. S.; Prasad, R. Mater. Lett. 2002, 55, 20.

- (23) Chakraborti, N.; Prasad, R. Bull. Mater. Sci. 2003, 26, 127.
- (24) Balammurugan, D.; Prasad, R. Bull. Mater. Sci. 2003, 26, 123.
- (25) Fedders, P. A. Phys. Rev. B 2000, 61, 15797.
- (26) Tuttle, B.; Van de Walle, C. G.; Adams, J. B. Phys. Rev. B 1999, 59, 5493.
- (27) Sinha, A. K.; Agarwal, S. C. J. Vac. Sci. Technol., B 2000, 18, 1805.
 - (28) Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
 - (29) Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
 - (30) Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100,
- 12974.
 - (31) Kalcher, J.; Sax, A. F. Chem. Phys. Lett. **1993**, 215, 601.
 - (32) Kalcher, J.; Sax, A. F. Chem. Phys. Lett. 1996, 259, 165.
- (33) Nimlos, M. R.; Harding, B. L.; Ellison, G. B. *J. Chem. Phys.* **1987**, 87, 5116.
- (34) Arnold, C. C.; Neumark. D. M. J. Chem. Phys. 1994, 100, 1797.
 (35) Raghavachari, K. J. Chem. Phys. 1986, 84, 5672; Raghavachari,
- K.; Rohlfing, C. M. J. Chem. Phys. 1988, 89, 2219.
 (36) Ordejón, P.; Lebedenko, D.; Menon, M. Phys. Rev. B 1994, 50,
- (30) Studyon, F., Ecoudenno, D., Menon, M. P. Holor, M. D. Lohor, (37)
- (37) Sieck, A.; Porezag, D.; Frauenheim, T.; Pederson, M. R.; Jackson, K. *Phys. Rev. A* **1997**, *56*, 4890.
- (38) Li, Q. S.; Xu, W. G.; Xie, Y.; Schaefer, H. F. J. Chem. Phys. 1999, 111, 7945.
- (39) Li, Q. S.; Xu, W. G.; Xie, Y.; Schaefer, H. F. J. Phys. Chem. A **1999**, 103, 7496.
- (40) Xu, W. G.; Li, G. L.; Yu, G.; Zhao, Y.; Li, Q. S.; Xie, Y.; Schaefer, H. F. J. Phys. Chem. A 2003, 107, 258.
- (41) Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F.; Nandi, S.; Ellison, G. B. *Chem. Rev.* **2002**, *102*, 231.
- (42) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
- (43) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (44) The BH and HLYP method implemented in the Gaussian programs
- has the formula $0.5 \times \text{Ex}(\text{LSDA}) + 0.5 \times \text{Ex}(\text{HF}) + 0.5 \times \text{Delta} -$
- Ex(B88) + Ec(LYP), which is not the exact formulation proposed by Becke in his paper. Becke, A. D. J. Chem. Phys. **1993**, 98, 1372.
 - (45) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648.
 - (46) Perdew, J. P.; Wang, Y. *Phys. Rev. B* **1992**, *45*, 13244.
 - (47) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
- M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann,
- M. A., Cheesman, J. R., Zakizewski, Y. G., Mohigondy, J. A., Sukanian, K. R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, Revision A9; Gaussian, Inc.: Pittsburgh, PA, 1998.
- (48) Huzinaga, S. J. Chem. Phys. **1965**, 42, 1293; Dunning, T. H. J. Chem. Phys. **1970**, 53, 2823; Huzinaga, S. Approximate Atomic Wave Functions II; Department of Chemistry, University of Alberta: Edmonton, Alberta, Canada, 1971; Vol. 2; Dunning, T. H.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H. F., Ed.; Plenum Publishing: New York, 1977; pp 1–27.
 - (49) Lee, T. J.; Schaefer, H. F. J. Chem. Phys. 1985, 83, 1784.
- (50) The experimental EAs of SiH–Si₄H are 1.277 ± 0.009 (ref 9), 2.31 ± 0.01 (ref 8), 2.53 ± 0.01 (ref 8), and 2.68 ± 0.01 eV (ref 8), repectively. The theoretical EAs predicted by B3LYP, BHLYP, BLYP, BPW91, and B3PW91 are 1.30 (ref 13), 1.12 (ref 13), 1.17 (ref 13), 1.40, and 1.41 eV for SiH; 2.31 (ref 13), 2.21 (ref 13), 2.13 (ref 13), 2.26, and 2.34 eV for Si_2H; and 2.56, 2.45, 2.37, 2.56, and 2.64 eV for Si_3H (ref 2), respectively (see text for Si_4H). Comparison with the experimental data shows that the average absolute errors for all five DFT methods are 0.04 (B3LYP), 0.13 (BHLYP), 0.18 (BLYP), 0.08 (BPW91), and 0.08 (B3PW91) eV.
- (51) Zhao, Y.; Xu, W. G.; Li, Q. S.; Xie, Y. M.; Schaefer, H. F. J. Comput. Chem. 2004, 25, 907.